• 通货膨胀的影响因素分析 不要轻易放弃。学习成长的路上,我们长路漫漫,只因学无止境。


    通货收缩的影响身分剖析

    ?

    文次要经由过程对通货收缩举行多身分剖析,树立以怀抱通货收缩的商品批发物价指数为应变量,以其它可量化影响身分为自变量的多元线性回归模子,对影响通货收缩的各次要经济身分举行考察,阐明

    顺叙它们对通货收缩的影响水平,从而为我国防止重大的通货收缩以确保经济的连续不变发展供应理论依据。

    ?要害词:通货收缩 多身分剖析 模子 计量经济学 检讨 批改

    一.问题提出

    ?在中国经济高速增进的同时,一系列征象也值得咱们沉思

    深入,中国能否经济已过热?投资增速过快,2003年全社会固定资产投资70073亿元,比上年增进26.1%,钢铁、电解铝、水泥行业过度投资愈演愈烈。货泉信贷增进偏快,央行在2003年货泉政策执行讲演中曾预测2004年M2和M1别离增进17%摆布,然而2004年2月末狭义货泉M2现实增进19.4% 狭义货泉M1现实增进19.8%,较着超过了央行的预期。物价总水平继承回升,2004年住民生产价钱指数,工业品出厂价钱指数,原材料、燃料、动力购进价钱指数较2003年都有3个指数点以上的增进。这些都阐明

    顺叙我国面临着较大的通胀压力。通货收缩的了局是重大的,不只会扭曲商品市场的价钱,使资源配置无效率,还同时会扭曲金融市场的价钱,惹起泡沫。

    二.文献综述

    1.货收缩的意义是:物品和生产身分的价钱遍及回升的时期。通货收缩意味着普通价钱水平的下跌。明天咱们用价钱指数即不计其数种产品的加权平均价钱来盘算通货收缩。

    (保罗·萨缪尔森《经济学》第十一版)

    平均价钱水平的回升,并不是任何一种不凡价钱的回升。

    (布拉德利·希勒《摩登经济学》)

    3.所谓通货收缩率,现实上也就是物价指数(如住民生产物价指数)的年增进率。普通地,各国用以盘算通货收缩率的物价指数次要有生产物价指数(CPI)(或批发物价指数RPI),批发物价指数(WPI)(或生产者价钱指数PPI),以及海内生产总值缩减指数(IPD)等三种。

    (?通货收缩问题研讨??中国物价?2005.01)

    ?4.(一)从需要方面对通货收缩举行剖析,挑选宏观经济变量:工业总产值,固定资产投资额的对数和批发

    ?物价指数的对数举行建模,挑选的样本区间为1980-1997年间的年度数据,树立向量自回归模子的价钱指数

    ?方程……(二)从工资本钱

    撑持方面剖析通货收缩,采纳了Granger因果关连检讨法,检讨本钱

    撑持对通货收缩的推

    ?动作用,挑选1978-1997年间的职工平均工资,批发物价下跌率的数据作为样本……(三)生产对通货收缩

    ?影响的计量剖析,挑选1978-1997年间的数据举行剖析,拔取的目标为绝对生产水平C=住民生产水平/人均

    ?GDP和批发物价下跌率P,得回归方程……

    ?(?我国通货收缩的成因剖析??天津市职工现代企业办理学院学报?2004.12第四期)

    ?5.(一)我国固定资产收缩次要默示为普通加工工业投资增进过快,非生产性建设如楼堂馆所搞得大多,这

    ?就构成投资布局向加工工业和非生产性建设歪斜,构成动力、原材料的供应和交通运输极度重大,由此带来

    ?的缺口又使国度不能不添加重点建设投资,使国度财政收支状况进一步好转,添加物价下跌的压力。(二)经

    ?济的增进也会招致通货收缩,经济增进了对货泉的需要就会添加,货泉的供应也会照应的添加,以是就会给

    ?通胀埋下必然的隐患。(三)外汇和通胀也有必然的联系。这类通货收缩是由于内债负担过重、外贸逆差过大

    ?以及国际市场价钱与海内市场价钱相差差异所惹起的通货收缩……(四)上一期的物价指数对通胀的影响在

    ?于:人们会按照上一期的物价指数来决议自身该期的生产企图,而且由于物价指数具有必然的滞后,以是它

    ?会对该期的通胀构成必然的影响。(?需要鞭策角度斟酌通货收缩成因的实证剖析?)

    三.理论陈述

    1.通胀的界说

    ?通货收缩是宏观经济的一个首要组成部分,也是摩登国度经济发展的一个要害问题。然而,到目前为止,还不一个被人们遍及接收别的关于通货收缩的界说。西方经济学中最经常使用的是实用主义的通货收缩界说:“通货收缩是价钱连续下跌的一种进程,或从一致意义上说,是货泉不断升值的一种进程。”咱们能够看出这个界说坚持了两点:(1)通货收缩是一种货泉征象而非普通的经济征象,通货收缩或通货紧缩的产生总是与货泉量的若干间接相干;(2)通货收缩所默示进去的物价下跌是历久的和遍及的,而不是个别商品价钱的上扬。

    ?西方经济学对通货收缩的分类有三种:(1)温和的通货收缩:年通货收缩率为一位数的通货收缩;(2)急剧的通货收缩:总价钱水平以每一年100%,以至200%的二位数或三位数的速率下跌;(3)恶性的通货收缩:各种价钱以每一年百分之一百万,以至百分之万亿的惊人速率连续下跌。

    ?对通胀的界说还有良多,但都是迥然不同。通胀的默示是物价在历久的遍及下跌,且通胀对经济的生长是很不利的。通货收缩使个人和企业蒙受更高的现实税赋;通货收缩降低储蓄的数目和效率;通货收缩淘汰投资;通货收缩重大侵害供应;通货收缩招致商业逆差。咱们要踊跃防止通胀的构成,因而有必要对通胀的成因举行一系列的剖析。

    2.通胀的怀抱

    ?普通情况下,世界各国多用海内生产总值GDP缩减指数的增进率和生产价钱指数的增进率来权衡通货收缩,这两个指数虽不能彼此替代,但在转变趋向上往往是一致的。在本文中,咱们采纳商品批发价钱指数来怀抱通货收缩。之以是挑选批发物价指数,是由于它能片面的反应整个国民经济中所有的价钱指数和物价水平,而且较其他的物价指数更具有代表性。

    3.通胀的影响身分

    ?影响通货收缩的身分良多,但由于许多身分之间彼此堆叠,同时为了反应影响通货收缩次要的经济身分,有必要从诸多的身分中选出有代表性的若干个。综合斟酌各方面的身分,咱们斟酌如下一些变量:

    (1)固定资产投资总额。我国当前的总需要增进较快,次要是由投资拉动的,而其中当局主导的投资拉动作用最较着,用于基础设施建设,我国固定资产收缩次要又默示为普通加工工业投资增进过快,这就构成投资布局向加工工业和非生产性建设歪斜,构成动力、原材料的供应和交通运输极度重大,添加物价下跌的压力。

    (2)经济增进(GDP)。经济的增进也会招致通货收缩,经济增进了对货泉的需要就会添加,货泉的供应也会照应的添加,以是就会给通胀埋下必然的隐患。

    (3)货泉发行量(M2)。为了拉动内需,国度有时会采用过度的货泉扩张政策,货泉超量供应会使市场购买力大增,此时,如果供应量不能满足添加的需要量,市场只有落价,这是由价值规律决议的。

    (4)外汇储备。内债负担过重、外贸逆差过大以及国际市场价钱与海内市场价钱相差差异也许惹起通货收缩。我国是一个海内商品供求极不平衡的国度,盲目添加入口,加剧了海内市场需要大于供应的征象,这是招致中国涌现通货收缩的一个首要缘由。入口商业的增进绝对落伍于入口商业,也是布局失衡而激发物价下跌的身分之一。为了补偿国际收支的不平衡,国度不能不采用进步价钱收购以添加入口产品,从而影响海内生产品的供应,加剧了海内市场供需抵牾。

    (5)上一期的批发物价指数。人们往往会按照上一期的物价指数来制订自身当期的生产企图,而且由于物价指数自身具有必然的滞后性,以是它会对该期的通胀构成必然的影响。

    四.数据起源

    ??? 来自于中国统计网和中经专网的统计年鉴和统计数据库,取1981-20004年的数据。见附表

    五.斟酌各阐明

    顺叙变量对应变量的独自影响

    ?为了确定上述影响身分能否的确为通货收缩成因,即能否现实影响物价指数,咱们先独自斟酌各身分对物价指数Y的影响能否较着:

    1. 固定资产投资总额(用I默示)

    ?按照经济意义,固定资产投资I与物价指数Y间有较高相干性,而且投资对物价的影响默示出较着的滞后性,滞后期为1—2年。

    ?经由过程阿尔蒙法对物价Y与投资I的关连举行剖析,得出如下模子:

    ??

    ???? T =(10.76649)(-3.13514)?? (3.74316)??? (3.59459)???? (-2.86842)

    ?=0.787022??? F=20.94014??? DW=0.519259

    ?可知,独自斟酌投资对物价影响,模子拟合普通,物价增进中有78.70%可由投资添加来阐明

    顺叙,滞后一期的t值最为较着,即滞后一期投资对物价影响较大,投资对物价影响的确有滞后性,滞后一期固定资产投资添加1%,惹起物价添加0.023%,因而,将滞后一期投资I(-1)引入模子。

    2.经济增进GDP(用G默示)

    ?按照经济意义,GDP与物价指数Y间具有较高相干性,且GDP对Y作用默示出必然的滞后性,滞后期约为1-2期

    ?经由过程阿尔蒙法对物价Y与GDP间关连举行剖析,得出如下模子:

    ?

    ?t=(10.30460)(-0.89143)????? (3.77052)?????? (2.60496)?????? (-4.12947)

    ?=0.8825884?????? F=42.59499????? DW=0.455755

    ?可知,只斟酌GDP独自对Y的影响,模子拟合较好,Y的增进中有88.26%可由各期GDP的增进阐明

    顺叙,滞后一期GDP的t值最大,即对Y的影响最较着,滞后一期GDP每添加1%惹起Y增进0.0084%,因而,将滞后一期G(-1)引入模子。

    3. 货泉发行量(用M默示)

    ?按照经济意义,货泉发行量M2对物价指数Y的影响较大,且滞后期也有必然的搅扰度。

    ?经由过程阿尔蒙法对物价Y与货泉发行量M间关连举行剖析,得出如下模子:

    ?

    ?t= (8.482353)?? ( 0.71553)??????? ( 0.99893)????? ( 0.55023)????? ( -0.08288)

    ?=0.527836?????? F=6.334803??????? DW=0.126593

    ?可知, 只斟酌货泉发行量M独自对物价Y的影响,模子拟合普通,Y的增进中有52.78%可由各期货泉发行量M阐明

    顺叙, 滞后一期货泉发行量M对Y的影响绝对其它期更为较着,以是,将滞后一期货泉发行量M(-1)引入模子。

    4.外汇储备(用F默示)

    ?按照经济理论, 物价Y与外汇F间在总体上应具有必然相干性,而且也许具有滞后作用

    ?经由过程阿尔蒙法对Y与F间关连举行剖析,得出如下模子:

    ?

    ?t = (10.09661)? (-1.42249)???? ( 1.79370)??? ( 1.588330)??? ( -0.95389)

    ?=0.518625????????? F=6.105156??????? DW=0.290702

    ?可知, 独自斟酌外汇F对物价Y的影响,模子拟合得不是很好,物价转变中仅有51.86%可由外汇转变阐明

    顺叙, 滞后一期外汇F对Y的影响绝对其他期更为较着,因而,将滞后一期外汇F(-1)引入模子。

    5. 上一期的批发物价指数(用Y(-1)默示)

    ?按照经济理论, 由于物价具有惯性作用,上几期物价水平对当期物价有必然影响,故现实剖析当期物价影响身分时还须斟酌上几期物价水平的影响。

    ?经由过程阿尔蒙法对Y与Y(-1)、Y(-2)等间关连举行剖析,最初得如下模子:

    ?

    ?t= (2.048973)???? ( 9.68148)????? (-2.31226)????? (-4.86821)???????? (2.87888)

    ?=0.983782????????? F= 323.5159?????????? DW=1.362548

    ?可知, 独自斟酌滞后期物价对当期物价的影响,模子拟合得很好,当期物价转变有98.38%可由上几期物价转变阐明

    顺叙, 上一期物价对当期影响最较着,t=9.68148,因而,将滞后一期物价Y(-1)也引入模子。

    六.模子树立及参数估量

    ?综上,咱们只拔取各身分中对当期物价影响最较着的那一期举行回归, 以防止同时引入当期和滞后期的阐明

    顺叙变量带来自由度的失落。具体来说,即投资身分中拔取滞后1期固定资产投资总额I(-1),经济增进身分中选滞后1期GDP(-1),货泉供应量身分中挑选滞后1期M(-1),外汇身分中选滞后1期外汇F(-1),上几期物价水平身分中选上1期批发商品物价指数Y(-1), 树立模子如下:

    ?

    用Eviews举行最小二乘估量得:

    ?t=(-0.431801)?? (-6.216710)?? (7.176346)??? (0.884635)??? (-4.986093)??? (13.77827)

    =0.994450????? DW=1.641975???? F=609.1879

    ?由以上了局可知,=0.994450,阐明

    顺叙模子全体拟合得很好, 各身分对物价的阐明

    顺叙水平高达99.445%;F=609.1879>F(18,4)=2.93 (较着性水平a=0.05),表白模子从全体上看物价指数与各阐明

    顺叙变量间线形关连较着;

    然而变量M(-1)参数的t值不较着,t=0.884635,而且G(-1)与F(-1)的参数值标识为负, 较着与经济意义不符, 按照变量较着性和方程较着性的综合判别, 可初步判别该模子具有多重共线性,需要举行批改。

    七. 各种检讨和批改

    1.多重共线性检讨和批改

    ?(1)检讨

    盘算各阐明

    顺叙变量之间的简单相干系数,得相干系数矩阵:

    ?????????????????????????? ?G(-1)?I(-1)?M(-1)?F(-1)?Y(-1)

    G(-1)?1????

    I(-1)?0.988020020169?1???

    M(-1)?0.93469553168?0.953971424757?1??

    F(-1)?0.937637199233?0.974600643179?0.943210798295?1?

    Y(-1)?0.911435296958?0.849934843755?0.766406750361?0.73233274266?1

    ?由上表可见,各个阐明

    顺叙变量间都具有高度相干性, 由模子回归了局也可看出, 只管模子全体拟合较好,但M(-1)的参数t值不较着,G(-1)与F(-1)的参数标识与经济意义相悖, 表白模子的确具有重大的多重共线性,需要举行批改

    (2)批改

    用逐步回归法:

    ⅰ.运用OLS方式逐个求Y对各个阐明

    顺叙变量的回归, 结合经济意义和统计检讨选出拟合后果最佳的一元线形回归方程:

    经剖析, 在五个一元回归模子的中Y与Y(-1)的线形关连最强,拟合水平最佳,因而,归入Y(-1)得模子①:

    ? ①

    ⅱ.逐步回归,

    将其他阐明

    顺叙变量逐个代入①式得如下四个模子:

    按照回归的了局, 对比剖析得: 归入G(-1)后使得进步的至多,且合乎经济意义, Y(-1)较着, 自身的较着性绝对其它变量也要强一些, 以是在模子①中再归入G(-1)得模子②

    ? ②

    将其他阐明

    顺叙变量再逐个代入②式得如下三个模子:

    按照回归的了局, 对比剖析得:归入I(-1)后使得进步的至多,且合乎经济意义,t值检讨也都是较着的, 以是在模子中再归入I(-1)得模子③

    ?? ③

    将残存阐明

    顺叙变量再逐个代入③式得如下两个模子:

    将M(-1)归入后,虽然有一点点的进步, 然而对其它参数的标识和数值不什么影响, 而且M(-1)的t值还较着,以是能够舍去M(-1)

    将F(-1)归入后, 虽然有一些些的进步, 然而F(-1)参数的标识为负, 不合乎经济意义, 以是仍是舍去F(-1)

    综上可得, Y对G(-1), I(-1), Y(-1)的回归模子为最优, 即经由过程多重共线性的批改失掉的最优模子为模子③

    ?

    2.异方差的检讨与批改

    (1)检讨

    ?a.White检讨

    ?????? 有交织项的White检讨,了局如下:

    White Heteroskedasticity demo:

    F-statistic?2.868072???? Probability?0.041593

    Obs*R-squared?10.29633???? 万博资讯,万博赔率析欧冠,意甲联赛直播万博app Probability?0.083111

    ????

    demo Equation:

    Dependent Variable: RESID^2

    Method: Least Squares

    Date: 06/05/05?? Time: 22:29

    Sample: 1982 2004

    Included observations: 23

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?-1609.676?794.0239?-2.027239?0.0637

    Y(-1)?24.29959?13.29177?1.828168?0.0906

    Y(-1)^2?-0.045494?0.049106?-0.926439?0.3711

    Y(-1)*I(-1)?0.000256?0.001779?0.144030?0.8877

    Y(-1)*G(-1)?3.86E-05?0.000921?0.041888?0.9672

    I(-1)?0.303240?0.275276?1.101585?0.2906

    I(-1)^2?9.88E-06?1.34E-05?0.735703?0.4750

    I(-1)*G(-1)?-1.18E-05?1.52E-05?-0.773686?0.4530

    G(-1)?-0.184846?0.133734?-1.382197?0.1902

    G(-1)^2?3.14E-06?4.31E-06?0.727475?0.4798

    R-squared?0.665058???? Mean dependent var?140.6020

    Adjusted R-squared?0.433175???? S.D. dependent var?157.万博资讯,万博赔率析欧冠,意甲联赛直播万博app0554

    S.E. of regression?118.2436???? Akaike info criterion?12.68239

    Sum squared resid?181760.2???? Schwarz criterion?13.17608

    Log likelihood?-135.8475???? F-statistic?2.868072

    Durbin-Watson stat?1.933704???? Prob(F-statistic)?0.041593

    由上可得, Obs*R-squared=10.29633<(9)=16.199,以是接收H0,谢绝H1,表白此模子随机误差U不具有异方差。

    ?不交织项的White检讨,了局如下:

    White Heteroskedasticity demo:

    F-statistic?3.287564???? Probability?0.026532

    Obs*R-squared?6.69920???? Probability?0.048069

    ????

    demo Equation:

    Dependent Variable: RESID^2

    Method: Least Squares

    Date: 06/05/05?? Time: 22:30

    Sample: 1982 2004

    Included observations: 23

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?-706.6808?469.3675?-1.505602?0.1517

    Y(-1)?9.936950?6.508144?1.526849?0.1463

    Y(-1)^2?-0.012226?0.006322?-1.933787?0.0710

    I(-1)?0.182330?0.076852?2.372483?0.0305

    I(-1)^2?-1.65E-06?9.46E-07?-1.746969?0.0998

    G(-1)?-0.087019?0.058422?-1.489487?0.1558

    G(-1)^2?2.92E-07?3.35E-07?0.871253?0.3965

    R-squared?0.552139???? Mean dependent var?140.6020

    Adjusted R-squared?0.384191???? S.D. dependent var?157.0554

    S.E. of regression?123.2469???? Akaike info criterion?12.71205

    Sum squared resid?243036.6???? Schwarz criterion?13.05763

    Log likelihood?-139.1885???? F-statistic?3.287564

    Durbin-Watson stat?2.028429???? Prob(F-statistic)?0.026532

    由上可得, Obs*R-squared=1.412724<(6)=7.81473, 以是接收H0,谢绝H1,表白此模子随机误差U不具有异方差。

    ?

    ?b.ARCH检讨

    ?间接用Eviews检讨,了局如下:

    ARCH demo:

    F-statistic?1.210277???? Probability?0.337999

    Obs*R-squared?3.699110???? Probability?0.295841

    ????

    demo Equation:

    Dependent Variable: RESID^2

    Method: Least Squares

    Date: 06/05/05?? Time: 22:35

    Sample(adjusted): 1985 2004

    Included observations: 20 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?144.6377?65.15535?2.219891?0.0412

    RESID^2(-1)?0.359478?0.245931?1.461702?0.1632

    RESID^2(-2)?-0.384531?0.247147?-1.555880?0.1393

    RESID^2(-3)?0.082280?0.245108?0.335687?0.7415

    R-squared?0.184955???? Mean dependent var?152.5619

    Adjusted R-squared?0.032135???? S.D. dependent var?165.4596

    S.E. of regression?162.7794???? Akaike info criterion?13.19953

    Sum squared resid?423954.3???? Schwarz criterion?13.39867

    Log likelihood?-127.9953???? F-statistic?1.210277

    Durbin-Watson stat?2.062402???? Prob(F-statistic)?0.337999

    由上可得, Obs*R-squared=3.699110< (3)=7.81473,以是接收H0,谢绝H1, 表白此模子随机误差U不具有异方差。

    由上述两种检讨方式都表白该模子的确不具有异方差.

    3.自相干的检讨与批改

    (1)检讨

    由于模子中有应变量Y的滞后期Y(-1),故不能用DW检讨,应当用德宾h—检讨

    由多重共线性批改后的模子了局得: DW=0.967524,Var()=0.107154^2,n=23,

    则=2.886> h(a/2)=1.96 (a=0.05)

    因而谢绝原假定=0,阐明

    顺叙模子具有正的一阶自相干。

    ?(2)批改

    先哄骗对数线形回归批改自相干,得模子④:

    DW=0.972403,Var()=0.146176^2,n=23,

    则=3.455> h(a/2)=1.96 (a=0.05)

    因而谢绝原假定=0,阐明

    顺叙对数模子仍然具有正的一阶自相干

    同时斟酌Cochrane-Orcutt迭代法,得模子⑤:

    DW=1.615575 , Var()=0.374280^2,n=22

    则=0.625

    因而接收原假定=0,阐明

    顺叙批改后的模子不存一阶自相干了

    再对模子⑤举行ARCH检讨:

    ARCH demo:

    F-statistic?0.258752???? Probability?0.853939

    Obs*R-squared?0.934879???? Probability?0.817004

    ????

    demo Equation:

    Dependent Variable: RESID^2

    Method: Least Squares

    Date: 06/05/05?? Time: 23:47

    Sample(adjusted): 1986 2004

    Included observations: 19 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?0.000862?0.000756?1.140467?0.2720

    RESID^2(-1)?-0.043121?0.256355?-0.168210?0.8687

    RESID^2(-2)?0.188130?0.253208?0.742987?0.4690

    RESID^2(-3)?0.128607?0.250396?0.513613?0.6150

    R-squared?0.049204???? Mean dependent var?0.001225

    Adjusted R-squared?-0.140955???? S.D. dependent var?0.002063

    S.E. of regression?0.002204???? Akaike info criterion?-9.212547

    Sum squared resid?7.29E-05???? Schwarz criterion?-9.013718

    Log likelihood?91.51920???? F-statistic?0.258752

    Durbin-Watson stat?1.912210???? Prob(F-statistic)?0.853939

    由上可得, Obs*R-squared=0.934879< (3)=7.81473, 以是接收H0, 谢绝H1, 表白此模子随机误差U不具有异方差.

    综上, 自相干批改后的模子⑤中、F值皆有所进步,t值除常数项外都较着, 而且不具有异方差和自相干,故模子⑤为最佳

    八.终极模子和论断

    1.终极模子

    ?模子表白, =0.992877,模子拟合很好, 即当期物价转变有99.29%可由滞后一期的GDP, 滞后一期的投资和滞后一期的物价配合阐明

    顺叙,且滞后一期GDP, 滞后一期投资与滞后一期物价对当期物价的别离影响都较着,t值别离为2.41218 , 2.457413, 2.50480

    ?滞后一期GDP每转变1%,惹起当期物价转变0.3619%,可见通货收缩是经济发展中不可防止的征象,以是咱们对通胀的态度应当是在保证经济发展的条件下踊跃办理,而不应当过于迟钝以至于构成经济减缓以至停滞;滞后一期投资转变1%,惹起当期物价转变0.333%阐明

    顺叙应当愈加注重投资身分对通货收缩的作用,愈加注重经由过程控制投资来控制通涨;滞后一期物价指数转变1%,惹起当期物价转变0.842%阐明

    顺叙通胀的办理是一个历久的进程,不也许经由过程某一段光阴的办理就能失掉较着的改善.

    2.论断

    ?从该模子能够看出, 模子的可决系数较高, 可见咱们对阐明

    顺叙变量的挑选是比拟片面的, 它们对应变量的结合影响水平很大, 虽然批改后阐明

    顺叙变量较着性有所降低, 但依然能合乎检讨要求, 可知通货收缩是多种经济身分配合作用的了局,独自一个影响身分的作用也许不是那末较着。

    ?还需要阐明

    顺叙的是, 在模子树立之初,斟酌到我国还处在市场经济低级,经济发展不太成熟,当局干涉干与较多,政策作用较为较着,咱们曾测验考试将当局政策和当局行为作为变量归入模子中,但由于其自身的复杂性,而且很难量化, 显然是不可行的,以是终极舍弃。但从模子的最初了局能够看出,可决系数是很高的, 达到0.992877, 阐明

    顺叙不归入当局干涉干与身分,做进去的模子后果也不错,这表白当局的干涉干与作用并不像咱们想象的那末大, 能够侧面反应我国市场经济发展的敏捷和安康水平, 如今有良多国度对我国市场经济体制持疑惑态度, 该模子也为对这类疑惑的辩驳供应了必然的理论依据。

    九.模子的缺点

    ?1. 为防止同时引入当期和滞后期的阐明

    顺叙变量带来自由度的失落,咱们用阿尔蒙法确定拔取各身分中对当期物价影响最较着的那一期,但从回归的了局看有些变量T值较小,各期都不是很较着,咱们只能挑选绝对比拟较着的那一期引入模子。这是咱们模子具有的缺点之一。

    ?2.用德宾h—检讨,发觉模子具有自相干需要批改时,由于咱们的模子引入了滞后一期的应变量,以是书上讲的良多普通的批改自相干的方式都不能用(由于都触及了差分的情理在里面,不适合用于有滞后变量的情况),由于所学学问所限咱们找不到更好的批改方法,以是只好仍选用Cochrane-Orcutt迭代法

    参考文献:

    保罗·萨缪尔森《经济学》第十一版

    布拉德利·希勒《摩登经济学》

    ?通货收缩问题研讨??中国物价?2005.01

    ?需要鞭策角度斟酌通货收缩成因的实证剖析?

    ?我国通货收缩的成因剖析??天津市职工现代企业办理学院学报?2004.12第四期

    ?附表:

    数据

    Y?G?I?M?F

    110.7?4860.3?961?2299.96?27.08

    112.8?5301.8?1230.4?2676.94?69.86

    114.5?5957.4?1430.1?3193.57?89.01

    117.7?7206.7?1832.9?4442.88?82.2

    128.1?8989.1?2543.2?5198.9?26.44

    135.8?10201.4?3210.6?6720.9?20.72

    145.7?11954.5?3791.7?8330.9?29.23

    172.7?14922.3?4753.8?100099.6?33.72

    203.4?16917.8?4410.4?11949.6?55.5

    207.7?18598.4?4517?15293.4?110.93

    213.7?21662.5?5594.5?19349.9?217.12

    225.2?26651.9?8080.1?25402.2?194.43

    254.9?34560.5?13072.3?34879.8?211.99

    310.2?46670?17042.1?46923.5?516.2

    356.1?57494.9?20019.3?60750.5?735.97

    377.8?66850.5?22913.5?76094.9?1050.29

    380.8?73142.7?24941.1?90995.3?1398.9

    370.9?76967.2?28406.2?104498.5?1449.6

    359.8?80579.4?29854.7?119897.9?1546.75

    354.4?88254?32917.7?134610.4?1655.74

    351.6?95727.9?37213.5?158301.9?2121.65

    347?103935.3?43499.91?185007?2864.07

    346.7?116603.2?55566.61?221222.8?4032.51

    356.4?136584.3?70073?253000?6099

    Eview回归了局

    Variable?Coefficient??Std. Error?t-Statistic?Prob.?

    C?144.7871??14.05072?10.30460?0.0000

    PDL01?0.008356??0.002216?3.770521?0.0015

    PDL02?0.003669??0.002087?1.758535?0.0966

    PDL03?-0.006574??0.002127?-3.090887?0.0066

    R-squared?0.882584??Mean dependent var?272.2190

    Adjusted R-squared?0.861864??S.D. dependent var?95.94448

    S.E. of regression?35.65934??Akaike info criterion?10.15554

    Sum squared resid?21617.00??Schwarz criterion?10.35450

    Log likelihood?-102.6332??F-statistic?42.59499

    Durbin-Watson stat?0.455755??Prob(F-statistic)?0.000000

    ????? Lag Distribution of G??i?Coefficient?Std. Error?T-Statistic

    ??????? * .?????? |??0?-0.00189? 0.00212?-0.89143

    ????????? .????? *|??1? 0.00836? 0.00222? 3.77052

    ????????? .??? *? |??2? 0.00545? 0.00209? 2.60496

    ?*??????? .?????? |??3?-0.01060? 0.00257?-4.12947

    ?Sum of Lags?? 0.00132? 0.00035? 3.81522

    Variable?Coefficient??Std. Error?t-Statistic?Prob.?

    C?175.2020??16.27290?10.76649?0.0000

    PDL01?0.023168??0.006445?3.594945?0.0022

    PDL02?0.018087??0.005192?3.483436?0.0028

    PDL03?-0.020560??0.005944?-3.459201?0.0030

    R-squared?0.787022??Mean dependent var?272.2190

    Adjusted R-squared?0.749438??S.D. dependent var?95.94448

    S.E. of regression?48.02617??Akaike info criterion?10.75101

    Sum squared resid?39210.72??Schwarz criterion?10.94997

    Log likelihood?-108.8856??F-statistic?20.94014

    Durbin-Watson stat?0.519259??Prob(F-statistic)?0.000006

    ????? Lag Distribution of I??i?Coefficient?Std. Error?T-Statistic

    ??? *??? .??????? |??0?-0.01548? 0.00494?-3.13514

    ???????? .?????? *|??1? 0.02317? 0.00644? 3.59495

    ???????? .????? * |??2? 0.02070? 0.00553? 3.74316

    ?*?????? .??????? |??3?-0.02290? 0.00798?-2.86842

    ?Sum of Lags?? 0.00549? 0.00145? 3.79400

    Variable?Coefficient??Std. Error?t-Statistic?Prob.?

    C?212.7083??21.06730?10.09661?0.0000

    PDL01?0.157300??0.099350?1.583297?0.1318

    PDL02?0.123440??0.075542?1.634049?0.1206

    PDL03?-0.131575??0.090173?-1.459139?0.1628

    R-squared?0.518625??Mean dependent var?272.2190

    Adjusted R-squared?0.433676??S.D. dependent var?95.94448

    S.E. of regression?72.20254??Akaike info criterion?11.56647

    Sum squared resid?88624.52??Schwarz criterion?11.76543

    Log likelihood?-117.4479??F-statistic?6.105156

    Durbin-Watson stat?0.290702??Prob(F-statistic)?0.005177

    ????? Lag Distribution of F??i?Coefficient?Std. Error?T-Statistic

    ?? *??? .???????? |??0?-0.09771? 0.06869?-1.42249

    ??????? .??????? *|??1? 0.15730? 0.09935? 1.58330

    ??????? .?????? * |??2? 0.14916? 0.08316? 1.79370

    ?*????? .???????? |??3?-0.12212? 0.12803?-0.95389

    ?Sum of Lags?? 0.08663? 0.03899? 2.22182

    Variable?Coefficient??Std. Error?t-Statistic?Prob.?

    C?18.48038??9.019337?2.048973?0.0572

    PDL01?-0.323368??0.139850?-2.312256?0.0344

    PDL02?-1.108375??0.148189?-7.479468?0.0000

    PDL03?0.745015??0.141633?5.260197?0.0001

    R-squared?0.983782??Mean dependent var?279.9450

    Adjusted R-squared?0.980741??S.D. dependent var?91.48969

    S.E. of regression?12.69667??Akaike info criterion?8.097413

    Sum squared resid?2579.288??Schwarz criterion?8.296560

    Log likelihood?-76.97413??F-statistic?323.5159

    Durbin-Watson stat?1.362548??Prob(F-statistic)?0.000000

    ????? Lag Distribution of Y(-1)??i?Coefficient?Std. Error?T-Statistic

    ????? .????????? *|??0? 1.53002? 0.15804? 9.68148

    ??? * .?????????? |??1?-0.32337? 0.13985?-2.31226

    ?*??? .?????????? |??2?-0.68673? 0.14106?-4.86821

    ????? .? *??????? |??3? 0.43994? 0.15282? 2.87888

    Variable?Coefficient??Std. Error?t-Statistic?Prob.?

    C?197.2142??23.24994?8.482353?0.0000

    PDL01?0.000419??0.000420?0.998934?0.3318

    PDL02?-8.60E-05??0.000522?-0.164672?0.8711

    PDL03?-7.64E-05??0.000395?-0.193215?0.8491

    R-squared?0.527836??Mean dependent var?272.2190

    Adjusted R-squared?0.444512??S.D. dependent var?95.94448

    S.E. of regression?71.50841??Akaike info criterion?11.54715

    Sum squared resid?86928.70??Schwarz criterion?11.74611

    Log likelihood?-117.2451??F-statistic?6.334803

    Durbin-Watson stat?0.126593??Prob(F-statistic)?0.004425

    ????? Lag Distribution of M??i?Coefficient?Std. Error?T-Statistic

    ?? .???????????? *|??0? 0.00043? 0.00060? 0.71553

    ?? .???????????? *|??1? 0.00042? 0.00042? 0.99893

    ?? .?????? *????? |??2? 0.00026? 0.00047? 0.55023

    ?* .????????????? |??3?-5.8E-05? 0.00070?-0.08288

    ?Sum of Lags?? 0.00105? 0.00037? 2.83844

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 12:15

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?-4.020024?9.309908?-0.431801?0.6713

    G(-1)?-0.004353?0.000700?-6.216710?0.0000

    I(-1)?0.012670?0.001766?7.176346?0.0000

    M(-1)?8.80E-05?9.95E-05?0.884635?0.3887

    F(-1)?-0.066149?0.013267?-4.986093?0.0001

    Y(-1)?1.193877?0.086649?13.77827?0.0000

    R-squared?0.994450???? Mean dependent var?258.4304

    Adjusted R-squared?0.992817???? S.D. dependent var?102.2527

    S.E. of regression?8.665968???? Akaike info criterion?7.376142

    Sum squared resid?1276.683???? Schwarz criterion?7.672358

    Log likelihood?-78.82564???? F-statistic?609.1879

    Durbin-Watson stat?1.641975???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:02

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?153.1682?16.39709?9.341183?0.0000

    G(-1)?0.002436?0.000292?8.354989?0.0000

    R-squared?0.768737???? Mean dependent var?258.4304

    Adjusted R-squared?0.757725???? S.D. dependent var?102.2527

    S.E. of regression?50.33028???? Akaike info criterion?10.75803

    Sum squared resid?53195.89???? Schwarz criterion?10.85677

    Log likelihood?-121.7174???? F-statistic?69.80585

    Durbin-Watson stat?0.123869???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:06

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?173.4674?18.01594?9.628553?0.0000

    I(-1)?0.005313?0.000811?6.552266?0.0000

    R-squared?0.671527???? Mean dependent var?258.4304

    Adjusted R-squared?0.655885???? S.D. dependent var?102.2527

    S.E. of regression?59.98277???? Akaike info criterion?11.10893

    Sum squared resid?75556.58???? Schwarz criterion?11.20767

    Log likelihood?-125.7527???? F-statistic?42.93219

    Durbin-Watson stat?0.132891???? Prob(F-statistic)?0.000002

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:07

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?186.6627?20.64986?9.039414?0.0000

    M(-1)?0.001148?0.000231?4.977152?0.0001

    R-squared?0.541205???? Mean dependent var?258.4304

    Adjusted R-squared?0.519357???? S.D. dependent var?102.2527

    S.E. of regression?70.89019???? Akaike info criterion?11.44308

    Sum squared resid?105533.8???? Schwarz criterion?11.54182

    Log likelihood?-129.5954???? F-statistic?24.77204

    Durbin-Watson stat?0.252897???? Prob(F-statistic)?0.000063

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:10

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?205.6000?19.99478?10.28269?0.0000

    F(-1)?0.065540?0.015117?4.335503?0.0003

    R-squared?0.472317???? Mean dependent var?258.4304

    Adjusted R-squared?0.447189???? S.D. dependent var?102.2527

    S.E. of regression?76.02622???? Akaike info criterion?11.58297

    Sum squared resid?121379.7???? Schwarz criterion?11.68171

    Log likelihood?-131.2042???? F-statistic?18.79658

    Durbin-Watson stat?0.136589???? Prob(F-statistic)?0.000291

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:10

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?18.96334?9.366769?2.024534?0.0558

    Y(-1)?0.966576?0.034957?27.65036?0.0000

    R-squared?0.973267???? Mean dependent var?258.4304

    Adjusted R-squared?0.971994???? S.D. dependent var?102.2527

    S.E. of regression?17.11203???? Akaike info criterion?8.600382

    Sum squared resid?6149.252???? Schwarz criterion?8.699120

    Log likelihood?-96.90439???? F-statistic?764.5423

    Durbin-Watson stat?0.543100???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:13

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?5.579119?12.40127?0.449883?0.6576

    G(-1)?-0.000367?0.000233?-1.578704?0.1301

    Y(-1)?1.084702?0.082095?13.21273?0.0000

    R-squared?0.976229???? Mean dependent var?258.4304

    Adjusted R-squared?0.973852???? S.D. dependent var?102.2527

    S.E. of regression?16.53462???? Akaike info criterion?8.569897

    Sum squared resid?5467.872???? Schwarz criterion?8.718005

    Log likelihood?-95.55382???? F-statistic?410.6823

    Durbin-Watson stat?0.676758???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:15

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?11.92845?11.65612?1.023364?0.3184

    I(-1)?-0.000444?0.000439?-1.012901?0.3232

    Y(-1)?1.023658?0.066305?15.43854?0.0000

    R-squared?0.974571???? Mean dependent var?258.4304

    Adjusted R-squared?0.972028???? S.D. dependent var?102.2527

    S.E. of regression?17.10146???? Akaike info criterion?8.637312

    Sum squared resid?5849.197???? Schwarz criterion?8.785420

    Log likelihood?-96.32909???? F-statistic?383.2568

    Durbin-Watson stat?0.636339???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:17

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?14.58319?10.63195?1.371638?0.1854

    M(-1)?-7.72E-05?8.71E-05?-0.886734?0.3858

    Y(-1)?1.003749?0.054699?18.35036?0.0000

    R-squared?0.974278???? Mean dependent var?258.4304

    Adjusted R-squared?0.971706???? S.D. dependent var?102.2527

    S.E. of regression?17.19977???? Akaike info criterion?8.648776

    Sum squared resid?5916.640???? Schwarz criterion?8.796884

    Log likelihood?-96.46093???? F-statistic?378.7742

    Durbin-Watson stat?0.674830???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 13:20

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?11.29909?10.45499?1.080737?0.2927

    F(-1)?-0.007245?0.004857?-1.491514?0.1514

    Y(-1)?1.021083?0.049902?20.46192?0.0000

    R-squared?0.975943???? Mean dependent var?258.4304

    Adjusted R-squared?0.973537???? S.D. dependent var?102.2527

    S.E. of regression?16.63390???? Akaike info criterion?8.581870

    Sum squared resid?5533.731???? Schwarz criterion?8.729978

    Log likelihood?-95.69150???? F-statistic?405.6756

    Durbin-Watson stat?0.649189???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 14:14

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?-20.71999?12.18349?-1.700662?0.1053

    G(-1)?0.004066?0.001037?3.919966?0.0009

    Y(-1)?1.393955?0.107154?13.00885?0.0000

    I(-1)?0.006849?0.001890?3.622942?0.0018

    R-squared?0.985941???? Mean dependent var?258.4304

    Adjusted R-squared?0.983721???? S.D. dependent var?102.2527

    S.E. of regression?13.04616???? Akaike info criterion?8.131636

    Sum squared resid?3233.845???? Schwarz criterion?8.329113

    Log likelihood?-89.51381???? F-statistic?444.1572

    Durbin-Watson stat?0.967524???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 14:17

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?-1.270748?13.84150?-0.091807?0.9278

    Y(-1)?1.149056?0.100705?11.41008?0.0000

    G(-1)?-0.000871?0.000516?-1.688798?0.1076

    M(-1)?0.000203?0.000186?1.092974?0.2881

    R-squared?0.977635???? Mean dependent var?258.4304

    Adjusted R-squared?0.974104???? S.D. dependent var?102.2527

    S.E. of regression?16.45476???? Akaike info criterion?8.595878

    Sum squared resid?5144.425???? Schwarz criterion?8.793355

    Log likelihood?-94.85259???? F-statistic?276.8503

    Durbin-Watson stat?0.640401???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 14:18

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?4.624315?17.40470?0.265694?0.7933

    Y(-1)?1.095854?0.162296?6.752200?0.0000

    G(-1)?-0.000437?0.000901?-0.485170?0.6331

    F(-1)?0.001503?0.018698?0.080383?0.9368

    R-squared?0.976237???? Mean dependent var?258.4304

    Adjusted R-squared?0.972485???? S.D. dependent var?102.2527

    S.E. of regression?16.96128???? Akaike info criterion?8.656514

    Sum squared resid?5466.013???? Schwarz criterion?8.853991

    Log likelihood?-95.54991???? F-statistic?260.1894

    Durbin-Watson stat?0.681311???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 14:26

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?-23.41426?12.89907?-1.815189?0.0862

    Y(-1)?1.416942?0.113165?12.52102?0.0000

    G(-1)?-0.004198?0.001067?-3.935619?0.0010

    I(-1)?0.006593?0.001948?3.384577?0.0033

    M(-1)?0.000109?0.000152?0.718318?0.4818

    R-squared?0.986333???? Mean dependent var?258.4304

    Adjusted R-squared?0.983296???? S.D. dependent var?102.2527

    S.E. of regression?13.21558???? Akaike info criterion?8.190330

    Sum squared resid?3143.728???? Schwarz criterion?8.437177

    Log likelihood?-89.18880???? F-statistic?324.7608

    Durbin-Watson stat?0.901438???? Prob(F-statistic)?0.000000

    Dependent Variable: Y

    Method: Least Squares

    Date: 06/05/05?? Time: 14:28

    Sample(adjusted): 1982 2004

    Included observations: 23 after adjusting endpoints

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?-1.701348?8.879219?-0.191610?0.8502

    G(-1)?-0.004247?0.000686?-6.193523?0.0000

    Y(-1)?1.173664?0.083076?14.12759?0.0000

    I(-1)?0.012922?0.001732?7.461501?0.0000

    F(-1)?-0.066643?0.013175?-5.058417?0.0001

    R-squared?0.994194???? Mean dependent var?258.4304

    Adjusted R-squared?0.992904???? S.D. dependent var?102.2527

    S.E. of regression?8.613471???? Akaike info criterion?7.334192

    Sum squared resid?1335.454???? Schwarz criterion?7.581039

    Log likelihood?-79.34321???? F-statistic?770.5972

    Durbin-Watson stat?1.707065???? Prob(F-statistic)?0.000000

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?1.463094?0.315764?4.633498?0.0002

    LN_G(-1)?0.796564?0.191679?4.155717?0.0005

    LN_I(-1)?0.529338?0.124035?4.267665?0.0004

    LN_Y(-1)?1.356134?0.146176?9.277402?0.0000

    R-squared?0.990185???? Mean dependent var?5.465324

    Adjusted R-squared?0.988635???? S.D. dependent var?0.451488

    S.E. of regression?0.048132???? Akaike info criterion?-3.072961

    Sum squared resid?0.044017???? Schwarz criterion?-2.875483

    Log likelihood?39.33905???? F-statistic?638.9099

    Durbin-Watson stat?0.972403???? Prob(F-statistic)?0.000000

    Dependent Variable: LN_Y

    Method: Least Squares

    Date: 06/05/05?? Time: 15:56

    Sample(adjusted): 1983 2004

    Included observations: 22 after adjusting endpoints

    Convergence achieved after 13 iterations

    Variable?Coefficient?Std. Error?t-Statistic?Prob.?

    C?1.584930?1.047378?1.513235?0.1486

    LN_G(-1)?0.361869?0.251085?2.441218?0.1677

    LN_I(-1)?0.332900?0.135468?2.457413?0.0250

    LN_Y(-1)?0.842310?0.374280?2.250480?0.0379

    AR(1)?0.813389?0.311174?2.613931?0.0181

    R-squared?0.992877???? Mean dependent var?5.498947

    Adjusted R-squared?0.991201???? S.D. dependent var?0.431635

    S.E. of regression?0.040489???? Akaike info criterion?-3.378836

    Sum squared resid?0.027870???? Schwarz criterion?-3.130871

    Log likelihood?42.16719???? F-statistic?592.3855

    Durbin-Watson stat?1.615575???? Prob(F-statistic)?0.000000

    Inverted AR Roots??????? .81

    上一篇:关于数字图书馆信息资源整合及其共享研究

    下一篇:加拿大“网红”总理访华先“吸粉”,借网络与